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Abstract 

Abnormal sound waves, or heart murmurs in 

Phonocardiogram (PCG) recordings, are potential 

indicators of congenital and acquired heart disease in 

pediatric populations. Detection of these murmurs, and 

therefore early diagnosis, is usually performed by 

cardiology specialists. In the 2022 PhysioNet/Computing 

in Cardiology Challenge, under the team name 

AKSJ_97BSc, we proposed a Multilayer Perceptron-based 

model that automatically classifies patient heart murmur 

status into three categories of present, unknown, or absent 

based on their metadata and PCG recording. The model 

also further divides the patients into two outcomes, 

indicating whether the patient’s clinical outcome 

diagnosed by the medical expert is normal or abnormal. 

The model was ranked 231 out of 305 submissions with a 

0.491 challenge score in the murmur classification 

category and 161 out of 305 submissions with a 11330.062 

challenge score in the outcome classification category. 

 

 

1. Introduction 

 Roughly 1% of neonates have congenital heart diseases, 

which significantly cause morbidity and mortality for 

several severe disorders [1]. Acquired heart diseases, such 

as rheumatic fever, are also becoming a serious public 

health issue in developing countries [2]. One of the 

common ways to non-invasively detect and diagnose 

congenital and acquired heart diseases is by studying the 

heart’s mechanical function through Phonocardiogram 

(PCG) recordings. While this is typically done by cardiac 

specialists, due to a lack of infrastructure and specialists, 

especially in developing regions, many patients face 

difficult challenges in getting an early diagnosis and 

subsequent treatment. As such, with the data provided by 

the 2022 PhysioNet/Computing in Cardiology Challenge 

collected from a pediatric population in northern Brazil, we 

developed a machine learning model in order to 

automatically determine whether a patient has heart 

murmurs or not and potentially help to save more lives with 

an early diagnosis. In section 2, the model is described 

along with the features and the method of feature 

extraction and selection. The training, cross-validation and 

evaluation phases are then described. In the next section 

the results are depicted and discussed. Finally, the paper is 

wrapped up in the conclusions section. 

 

2. Material and Method 

2.1. Data 

The dataset contains 3163 PCG recordings from 942 

patients and their metadata. Each patient has two labels, 

one that determines their heart murmur status (Present, 

Unknown or Absent) and the other that shows if the clinical 

outcome diagnosed by the medical expert is normal or 

abnormal [3]. The PCG signals are sampled at a rate of 

4000 Hz and are typically about 10 to 30 seconds long. 

There can be up to five PCG recordings for each patient 

taken from prominent auscultation locations: pulmonary 

valve (PV), aortic valve (AV), mitral valve (MV), tricuspid 

valve (TV), and other (Phc). These recordings were 

collected in a sequential manner by a digital stethoscope. 

2.2. Preprocessing 

Since the frequency of heart murmurs occur in the 20 to 

500 Hz range [4], a fifth-order Butterworth band-pass filter 

is used in this range for all PCG recordings. Imputation of 

missing data is done by filling them with the mean value 

of each column (or feature). Finally, z-score normalization 

is used to scale the data. 

2.3. Feature extraction and selection 

The First and one of the essential parts of a supervised 

machine learning algorithm (such as ours) is feature 

extraction, since the performance of the model is highly 

dependent on finding a relevant set of features that 

adequately describe the target. As well as patient metadata 

(age, sex, height, weight and pregnancy status), we 

extracted statistical features from the PCG signals in the 

time domain (TD), frequency domain (FD), and time-

frequency domain (TFD). 
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In TD, the signal's mean, variance, skewness, and 

kurtosis were extracted. 

In FD, the signal was first transformed by the Fast 

Fourier Transform (FFT) algorithm, and then the four 

previously mentioned statistical measures were calculated 

as FD features. Total Harmonic Distortion (THD), is 

another feature that has been calculated from the FFT 

signal and is expected to be higher in murmur signals 

according to [5]. 

Another set of features were extracted from the Power 

Spectral Density (PSD) estimate of the signal using the 

Welch method.  In addition to the four statistical features, 

the relative power of the signal in the frequency bands 20-

130 Hz, 130-400 Hz and 400-500 Hz were extracted as 

features from the PSD estimate. 

Finally, the last set of features were extracted in TFD, 

specifically with the use of the Wavelet Transform (WT). 

The   Daubechies 7 wavelet was chosen as the mother 

wavelet and a 5-level decomposition was performed on the 

PCG signal. The mean and variance of the approximation 

coefficients and each of the five detail coefficients were 

calculated as features. In the end, we extracted a total of 

151 features for each patient.  

    After feature extraction, we need to select the features 

with the best performance for the model. To do this we 

used a technique called sequential forward floating 

selection (SFFS) [6]. The algorithm selects one feature 

with the best performance (after a 5-fold cross-validation) 

and sequentially adds more features as long as the 

performance improves. Furthermore, after each iteration, 

the algorithm removes one feature from the selected pool 

and checks whether the performance improves or not. This 

way, we can find the best possible number and 

combination of features (or at least get very close to them) 

in a much shorter time compared to testing every possible 

feature combination. Figures 1 and 2 show the model's 

performance after performing SFFS going from 1 to 151 

features for murmur and outcome classification. The 

performance metric used in this paper, balanced accuracy, 

is the arithmetic mean of the recall score for each class. 

This metric is particularly useful in the case of murmur 

classification, as it gives each class the same weight 

regardless of its size and penalized the score if the model 

is severely biased towards one class. 

 

2.4. Classifier 

The classifier is an MLP with four hidden layers with 

256, 128, 64, and 32 neurons in each layer, respectively. 

Admittedly, the number of layers was chosen arbitrarily. 

However, while the higher number of layers and neurons 

can potentially cause overfitting, this issue is mitigated by 

a regularization factor in the classifier, effective feature 

selection, and a relatively large data set. The MLP 

classifier uses the "Adam" solver for weight optimization 

[7]. The activation function is the ReLU function, and the 

learning rate is 0.001. The output layer uses a softmax 

function to output the probability of the input belonging to 

each of the classes. 

 

2.5. Training 

As stated before, the challenge dataset is labeled for 

both heart murmur classification (3 labels) and clinical 

outcome classification (2 labels). However, the classes in 

the first case are severely imbalanced, with 695 out of 942 

patients belonging to the Absent class, 179 belonging to 

Present class, and the rest to Unknown class. This could 

lead to the model being heavily biased towards the 

majority class. We can see this effect clearly in Table 1, as 

the recall (averaged after 10-fold cross-validation) for the 

majority class (Absent) is very high while the recall for the 

two other classes is extremely low. Therefore, we needed 

to balance the dataset in order to prevent this issue. One 

way to do this is through oversampling, but instead of 

using duplicated samples, by using the Synthetic Minority 

Oversampling Technique (SMOTE), we can generate new 

samples based on existing data. The SMOTE algorithm has 

many variations, and through experimentation, we opted to 

  

   

    

   

    

   

    

   

                     

 
  
  
  
 
  
  
 
  
  

               

  

    

    

    

    

   

    

    

                     

 
  
  
  
 
  
  
 
  
  

               

Figure 1. SFFS results for murmur classification. 25 

features show the highest performance. 

Figure 2. SFFS results from outcome classification. 33 

features show the highest performance. 
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use SMOTEENN [8], which uses the Edited Nearest 

Neighbours (ENN) algorithm to synthesize new samples. 

Going back to Table 1, the effect of using SMOTEENN is 

clear. There is a significant increase in the recall of 

minority classes, and while the recall for the majority class 

is decreased, this is still a more favorable outcome since 

the primary function of the model should be detecting the 

presence of a heart murmur. Thankfully, the issue of 

imbalance is not present in the two clinical outcome 

classes, as they are similarly sized to each other. Even so, 

as our model is shown to be sensitive to data imbalances, 

we used a random undersampler to even out the size 

differences. 

 

 Present 

recall 

Unknown 

recall 

Absent 

recall 

Balanced 

accuracy 

Imbalanced 

dataset 

0.2284 0.1619 0.856 0.4154 

Balanced 

dataset with 

SMOTEENN 

0.5035 0.7523 0.4748 0.5769 

 

Table 1. Comparison of the performance between using 

imbalanced data and balanced data using SMOTEENN. 

 

2.6. Cross-validation 

In order to evaluate the performance of the model for 

our model, we used stratified (to ensure each fold has the 

same proportion of samples in each class as the whole 

dataset) 10-fold cross-validation and balanced accuracy 

(average of the recall for each class) as our performance 

metric. One thing to note here is that while we used 

SMOTEENN to generate new samples, we did this only for 

the training folds and not for the test fold, since evaluating 

the model’s performance with synthetic samples can lead 

to inaccurate results. Figure 3 shows the final architecture 

of our model. 

 

3. Results and discussion 

Tables 2 and 3 show the final model’s results and the 

PhysioNet challenge score [9] for murmur and outcome 

classification, respectively. These results are the averaged 

output of the 10-fold cross-validation. The AUC results for 

murmur classification are reported for each class by the 

one-vs-rest strategy. Among 25 features selected by SFFS 

in heart murmur classification, nine were taken from PSD 

Figure 3. Final model architecture. 
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estimate, seven from the wavelet coefficients in TFD, and 

five from the FD. This could indicate that for heart murmur 

detection, frequency and time-frequency components 

might lead to more accurate results than TD components. 

Furthermore, none of the features relating to the patient’s 

metadata were chosen, possibly showing age, gender, 

height, weight, or pregnancy status might not be effective 

indicators for heart murmur detection. The same story is 

mainly true for outcome classification, with only 4 TD 

features out of 33 being selected by SFFS. Similarly, with 

the exception of pregnancy status, the other metadata 

remain unselected. 

 

 Classes 

 Present Unknown Absent 

AUC 0.645 0.796 0.654 

Recall 0.5035  0.7523 0.4748 

Balanced 

accuracy 

0.5769 

Challenge 

score 

0.491 

 

Table 2. Heart murmur classification results. 

 Classes 

 Abnormal Normal 

AUC 0.638 0.639 

Recall 63.15 60.11 

Balanced 

accuracy 

0.6163 

Challenge score 11330.062 

 

Table 3. Clinical outcome classification results. 

 Overall, while our approach appears promising, the 

model's accuracy still leaves much to be desired. One 

weakness of our model (and possible future research and 

improvement) is the method we used to extract TD, FD, 

and TFD features from the PCG recordings. As stated 

earlier, each of these recordings is about 20 to 30 seconds 

long and thus, contains several heart cycles. Since heart 

murmurs typically occur in every cycle, segmenting the 

PCG recordings so that each segment contains only one 

heart cycle and extracting features from these segments 

(rather than on the whole PCG signal as we did in this 

paper) could lead to finding more murmur-specific 

components and decreases the amount of noise. 

   

4. Conclusion 

In this paper, we described and explored an MLP-based 

machine learning model for automated heart murmur 

detection and classification of clinical outcome status. The 

model was trained with data including patient PCG 

recordings gathered from a young population in Brazil. We 

discussed the importance of FD and TFD analysis of PCG 

signals for heart murmur detection and used a novel 

oversampling technique to overcome the issue of an 

imbalanced dataset. With a balanced accuracy of 0.5769 

across three labels, the model shows promise and with 

further investigation and research into its weaknesses, 

particularly in the feature extraction phase by heart cycle 

detection and PCG segmentation, the model’s 

implementation in a clinical setting could assist medical 

staff with congenital and acquired heart disease detection, 

especially in developing regions where lack of adequate 

resources and medical specialists prevent patients from 

receiving early diagnosis and treatment. 
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